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COMMENTARY

Between two stools: preclinical research, 
reproducibility, and statistical design 
of experiments
Penny S. Reynolds*   

Abstract 

Translation of animal-based preclinical research is hampered by poor validity and reproducibility issues. Unfortunately, 
preclinical research has ‘fallen between the stools’ of competing study design traditions. Preclinical studies are often 
characterised by small sample sizes, large variability, and ‘problem’ data. Although Fisher-type designs with randomi-
sation and blocking are appropriate and have been vigorously promoted, structured statistically-based designs are 
almost unknown. Traditional analysis methods are commonly misapplied, and basic terminology and principles of 
inference testing misinterpreted. Problems are compounded by the lack of adequate statistical training for research-
ers, and failure of statistical educators to account for the unique demands of preclinical research. The solution is a 
return to the basics: statistical education tailored to non-statistician investigators, with clear communication of sta-
tistical concepts, and curricula that address design and data issues specific to preclinical research. Statistics curricula 
should focus on statistics as process: data sampling and study design before analysis and inference. Properly-designed 
and analysed experiments are a matter of ethics as much as procedure. Shifting the focus of statistical education from 
rote hypothesis testing to sound methodology will reduce the numbers of animals wasted in noninformative experi-
ments and increase overall scientific quality and value of published research.
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Introduction

“…I think we’re falling between two stools at the 
moment.… I think we have to take a step backward 
and address the basics of our game.”

––Donal Lenihan 25 Nov 2020, RTÉ Rugby Podcast, 
on Ireland’s need to revise training strategy following a 
string of defeats to England.

Criticism of much animal-based preclinical research 
has centred on reproducibility issues and poor transla-
tion [1, 2]. Causes are systemic and multifactorial, and 

include poor model fidelity, clinical irrelevance of tar-
get biomarkers or molecular pathways, and between-lab 
disparities in models and procedures [3, 4]. Difficulties 
in verifying and replicating methodology [5] and meth-
odological issues related to poor statistical design and 
analysis are also major contributors [6–10]. Translational 
failure has massive economic repercussions. Advances in 
therapeutic agents or diagnostics development are more 
than offset by multimillion-dollar losses in investment, 
and ultimately unsustainable research and develop-
ment costs [6, 11, 12]. There is also a significant ethical 
component to these failures. If questionable methodol-
ogy produces biased or invalid results, evidence derived 
from animal-based research cannot be a reliable bridge to 
human clinical trials [13]. It is difficult to justify the con-
tinued use of millions of animals each year if the majority 
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are wasted in non-informative experiments that fail to 
produce tangible benefit.

In this commentary, I suggest that preclinical research 
has ‘fallen between two stools’, by not conforming to 
either clinical trial or agricultural research traditions or 
skillset camps, and with little of the rigour of either. The 
solution is a return to the basics for statistical educators 
and consultants: statistical training explicitly tailored to 
non-statistician investigators, and coverage of statisti-
cal issues and topics relevant to preclinical research. 
In particular, I urge a change in focus from statistics as 
‘just maths’ to statistics as process. I argue that reform of 
introductory statistics curricula along these lines could 
go far to reverse statistical pathologies common to much 
of the preclinical research literature.

Main text
Two stools of competing traditions
The clinical trial and agricultural/industrial research 
traditions show considerable divergence in focus and 
methodology. Clinical trials are performed when there 
is uncertainty regarding relative efficacy of a specific 
clinical intervention. They are constrained by the neces-
sity to minimize subject risk of mortality and severe 
adverse events. In general, clinical trials tend to be rela-
tively large and simple, with only two or a few compara-
tor interventions randomly assigned to many subjects, 
ideally representative of the target population. Although 
clinical trials have a history going back several hundred 
years (e.g. [14]), the randomized controlled trial (RCT) 
as the gold standard was a relatively recent development, 
with the first modern RCT performed in 1946 [15, 16], 
and formalisation only in the late 1970s. Lagging imple-
mentation was due in part to resistance to the so-called 
“numerical approach” by supporters of the non-ran-
domised “let’s-try-it-and-see” attitude to clinical research 
problems [17, 18]. Meanwhile, methodology for obser-
vational studies was being developed in parallel. Cohort 
studies in particular have had a key role in epidemio-
logical investigations of carcinogenic and environmental 
hazards when RCTs are not feasible [19]. Because factors 
are not randomly assigned to subjects, inferring causality 
requires stringent methodological safeguards for mini-
mising confounding and bias [15, 20, 21].

In contrast, agricultural/industrial designs are charac-
terised by small sample sizes and multiple factors studied 
simultaneously. In addition to randomisation, key design 
features include replication and blocking (‘local control’), 
coupled with formal statistically-structured arrange-
ments of input variables, such as randomized complete 
block and factorial designs [22]. Agricultural designs 
were developed primarily by Sir Ronald Fisher in the 
early half of the twentieth century. These principles were 

subsequently extended to industrial experimentation by 
George Box and collaborators [23]. Industrial experi-
ments are further distinguished by sequential implemen-
tation (data from a small or restricted group of runs in 
the original experiment can be used to inform the next 
experiment), with prompt feedback (immediacy), allow-
ing iteration and relatively rapid convergence to target 
solutions [24]. For these applications, variable screening 
and model building are both of interest, and ‘design’ is 
essentially the imposition of a statistical model as a useful 
approximation to the response of interest [23, 25].

Preclinical studies: between the stools
Animal-based research studies are unique for the explicit 
ethical obligation to minimise the numbers of animals 
used. Application of Three Rs (Replacement, Reduction, 
Refinement) principles are based on the premise that 
maximum scientific value should be obtained with mini-
mal harms [26]. However, over-emphasis on numbers 
reduction has contributed to underpowered experiments 
generating unreliable, and ultimately noninformative, 
results [27, 28].

Small sample sizes, large variability, multi-group com-
parisons, and the exploratory nature of much preclini-
cal research suggest that study designs should be more 
aligned with the agricultural/industrial tradition. Fisher-
type designs (such as randomised complete blocks and 
factorials) are suitable for purpose and have been vigor-
ously promoted [12, 29–33], as have procedural methods 
for controlling variation without increasing sample size 
[34], and design features that increase validity [1, 35]. 
However, these methods seem to be virtually unknown 
in the preclinical literature [7, 8, 36–38]. Two-group 
comparisons more typical of clinical trials are com-
mon, although unsuited to assessing multiple factors 
with interactions. Informal examination of introduc-
tory textbooks and statistics course syllabi suggest that 
knowledge gaps are due in part to sparse formal training 
in experimental design, and neglect of analytical meth-
ods more suited to preclinical data. Compounding these 
problems is lack of general statistical oversight. Unlike 
human-based studies [39], few animal research oversight 
committees in the USA have access to properly qualified 
biostatisticians, statistical analysis plans and study pre-
registration are not required, and protocol review criteria 
vary considerably between institutions [40].

Statistical pathologies in the preclinical literature
Bad statistical practices are very deeply entrenched 
in the preclinical literature. Many of the major errors 
observed in the research literature involve statisti-
cal basics [41–43]. Statistics service courses tend to 
emphasise mathematical aspects of probability and 
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null hypothesis significance testing at the expense of 
non-mathematical components of statistical process 
[44–46]. Consequently, it is now part of the belief sys-
tem of many investigators that ‘statistical significance 
(P < 0.05)’ is the major criterion for assessing biological 
importance of results, and that P-values are an intrin-
sic property of the biological event or group of animals 
being studied [47]. As a result, there is over-reliance on 
rote hypothesis testing and P-values to interpret results. 
Related pathologies include reporting of orphan inexact 
P-values with no context, P-hacking, N-hacking, selec-
tive reporting, and spin [41, 48].

A second problem area is poor understanding by 
investigators of basic statistical concepts and opera-
tional definitions. Statistical terms are frequently con-
flated with lay meanings, confused with other technical 
definitions, or ignored. Concepts that seem especially 
misunderstood include ‘study design’, ‘randomisation’, 
‘cohort’, ‘unit of analysis’, and ‘replication’. To investi-
gators, ‘study design’ refers primarily to descriptions 
of technical methodology and materials, e.g. [49]. 
To applied statisticians, ‘study design’ is the formal 
arrangement and structuring of independent or predic-
tor variables hypothesized to affect the response or out-
come of interest. A good study design maximizes the 
experimental signal by accounting for diverse sources 
of variability [31, 50, 51]), and incorporates specific 
design features to ensure results are reliable and valid, 
such as correct specification of the unit of analysis, 
relevant outcome measures, inclusion and exclusion 
criteria, and bias minimization methods [8, 35, 52]. 
‘Randomisation’ to statisticians is a formal probabilis-
tic process that minimizes selection bias and effect of 
latent confounders, and is the cornerstone for statisti-
cal inference. In contrast, randomisation in preclinical 
studies seems to be frequently misinterpreted in the 
lay sense of ‘unplanned’ or ‘haphazard’ [53], or is likely 
not performed at all [8, 38, 54, 55]. The common habit 
of referring to a group of animals subjected to a given 
treatment or intervention as a ‘cohort’ likely reflects 
non-random allocation of subjects to a defined inter-
vention group, an invalid and confounded assignment 
strategy [56]. The term ‘cohort’ actually refers to groups 
of subjects in observational studies, where group mem-
bership is defined by some common characteristic [19]. 
It does not refer to experimental treatment groups 
with group allocation determined by randomisation. 
The meaning of ‘unit of analysis’ is virtually unknown, 
or confused with biological and observational units 
[56–58]. ‘Replication’ is frequently interpreted solely as 
duplication of the total sample size for ‘reproducibility’ 
[59], rather than as an independent repeat run of each 
combination of treatment factors [25].

A third area of concern is that the conventional statis-
tical arsenal of t-tests, ANOVA, and χ2 tests [60, 61] is 
unsuited for analysing ‘problem’ data typical of many 
preclinical studies. ‘Problem’ data include non-gaussian, 
correlated (clustered, nested, time dependencies), or 
non-linear data; data that are missing at random or due 
to dropout or attrition; data characterised by over-rep-
resentation of true zeros; and high-dimensional data. A 
major deficiency that must be addressed is the focus of 
introductory courses on methods virtually unchanged 
since the 1950s, with little coverage of modern methods 
more appropriate for such data [8, 35, 44].

Finally, there is little attention paid to methods for 
identifying diverse sources of variation during experi-
ment planning. Research papers rarely report auxiliary 
variables and conditions related to animal signalment, 
environment, and procedures only indirectly related to 
the main experiments, e.g. [62]. Such variables contrib-
ute to unpredictable effects on animals and experimental 
results, resulting in uncontrolled variation that obscures 
true treatment effects. For example, systematic investi-
gations of factors contributing to survival time in mouse 
models of amyotrophic lateral sclerosis suggested that 
claims for therapeutic efficacy were most likely due to the 
effects of uncontrolled variation rather than actual drug 
effects [12, 29, 33].

Outlook
Lack of knowledge on the part of investigators is related 
to training deficiencies on the part of statistics educators. 
The solution is a return to the basics: statistical education 
that meets the needs of non-statistician investigators, 
and curricula addressing design and data issues specific 
to preclinical research. This is hardly new: in 1954, John 
Tukey identified as essential that “statistical methods 
should be tailored to the real needs of the user” [63], and 
this has been repeated in the decades since [9, 44, 46, 
64, 65]. Investigators still identify better training in sta-
tistics and statistical methods as a high priority [9, 64]. 
The June 2021 report by the Advisory Committee to the 
Director of the National Institutes of Health (NIH-ACD) 
made five major recommendations to improve rigor and 
reproducibility of animal-based research, among which 
was recognition of the need for “modern and innovative 
statistics curricula relevant to animal researchers” [9].

What do researchers need? The poor internal validity 
characterising much preclinical research [66] reflects 
poor understanding of the upstream basics of statisti-
cally-based study design and data sampling strategies. 
Unreliable downstream results cannot be rescued by 
fancy analyses after the fact, as Fisher himself warned 
[67]. Therefore, the concept that good statistical prin-
ciples must be built in during planning and before data 
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are collected must be introduced and reinforced. This 
can be accomplished first, by more appropriate train-
ing of entry-level researchers with courses and topic 
coverage more attuned to specific need, and second 
by removal of longstanding barriers (such as cost and 
academic credit) to early consultation with appropri-
ately-training statisticians. Early formal involvement 
of applied statisticians in the planning process must be 
encouraged and rewarded [9, 68].

Statistical educators and consultants must be re-edu-
cated to better address actual research needs. ‘Statis-
tics’ is neither just maths nor an analytical frill tacked 
on to a study after data have been collected. Instead, 
statisticians must structure instructional materials to 
reflect the basic tenets of statistical process: design 
before inference, and data quality before analysis [69]. 
Data curation skills are also part of good statistical 
practice [46], identified as such for nearly a century 
[70]. These practices are not strongly mathematical, and 
unfortunately statisticians tend to be uninterested in 
non-mathematical procedures [46, 71]. Second, service 
courses must shift away from pedagogical approaches 
common to applied maths or algebra, where uncritical 
analysis of a data set leads to a fixed ‘correct’ solution 
[46, 71, 72]. Procedural change could be accelerated 
by statisticians becoming more aware of best-practice 
expectations though evidence-based planning [73] 
and reporting [74] guidelines. These tools can direct 
early-stage study planning to ensure that procedures 
strengthening study validity can be incorporated [4, 35, 
74, 75].

Properly designed and analysed experiments are an 
ethical issue [28, 66, 69]. Shifting the focus of statistical 
education from rote hypothesis testing to sound meth-
odology should ultimately reduce the numbers of ani-
mals wasted in noninformative experiments and increase 
overall scientific quality and value of published research.
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